

External Flows

Thursday, February 12, 2026

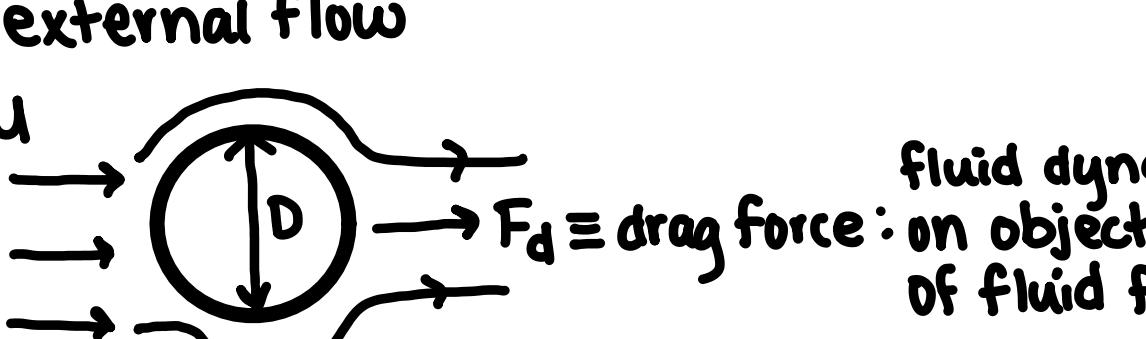
12:01 PM

Review

Circle of Flow Calculations

- forces, stresses, pressures $\xleftrightarrow{\text{size}}$ velocity, volumetric/mass flowrates
- \uparrow inertial stress properties U \uparrow Q
- $f \ C_D \ C_f \xleftrightarrow{\text{dimensionless}} Re = \frac{\rho u L}{\mu}$

• internal flows

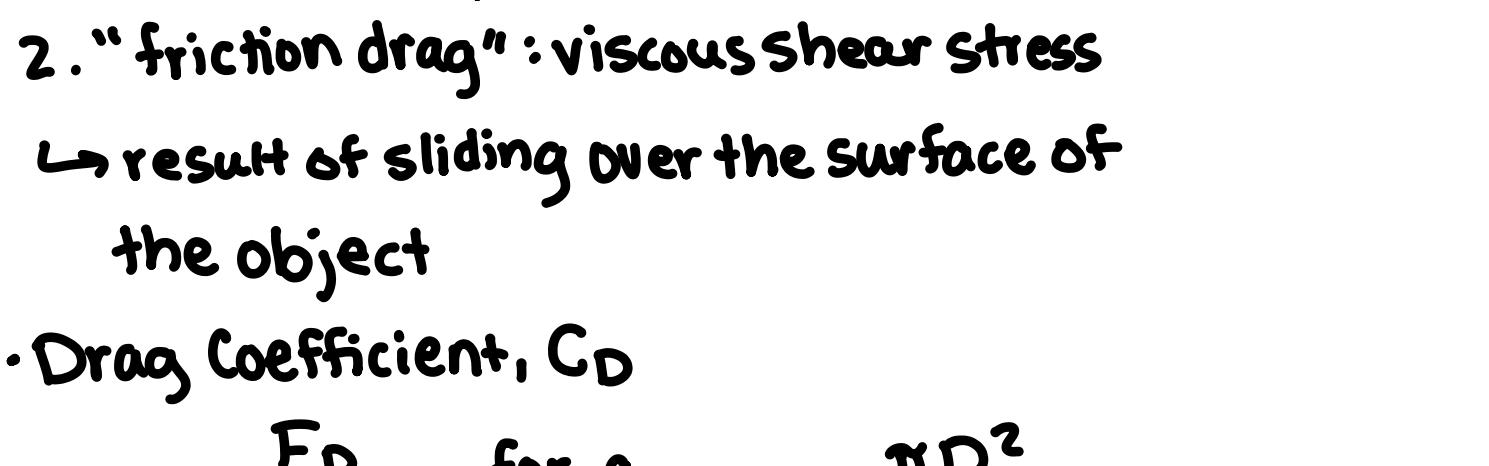


f = friction factor

$f(Re) \rightarrow$ ratio of friction stress to inertial

• unidirectional and confined

• external flow



• U is velocity relative to the object

C_D = drag coefficient

$C_D = f(x)(Re)$; dimensionless

Drag Force

• 2 effects:

1. "form drag": pressure difference

2. "friction drag": viscous shear stress

\hookrightarrow result of sliding over the surface of the object

• Drag Coefficient, C_D

$$\text{stress} = \frac{F_D}{A_\perp} ; \text{ for a sphere} : A_\perp = \frac{\pi D^2}{4}$$

$$C_D = \frac{F_D / A_\perp}{\frac{1}{2} \rho U^2} ; \text{ for a sphere} : \frac{8}{\pi} \frac{F_D}{\rho U^2 D^2}$$

• C_D in Different Regimes - Sphere

1. $Re < 1$, $C_D = 24/Re$, Stokes regime, viscous stresses dominate

$$F_D = 3\pi \mu U D$$

2. $0.1 < Re < 4 \cdot 10^3$, $C_D = 0.28 + \frac{6}{\sqrt{Re}} + \frac{21}{\sqrt{Re}}$, viscous + inertial

3. $750 < Re < 10^5$, Newton's Regime, $C_D \approx 0.445$, inertial

4. $2 \cdot 10^5 < Re < 4 \cdot 10^6$, Eiffel's, C_D falls

5. $Re > 10^6$, $C_D = 0.19 - \frac{8 \cdot 10^4}{Re}$

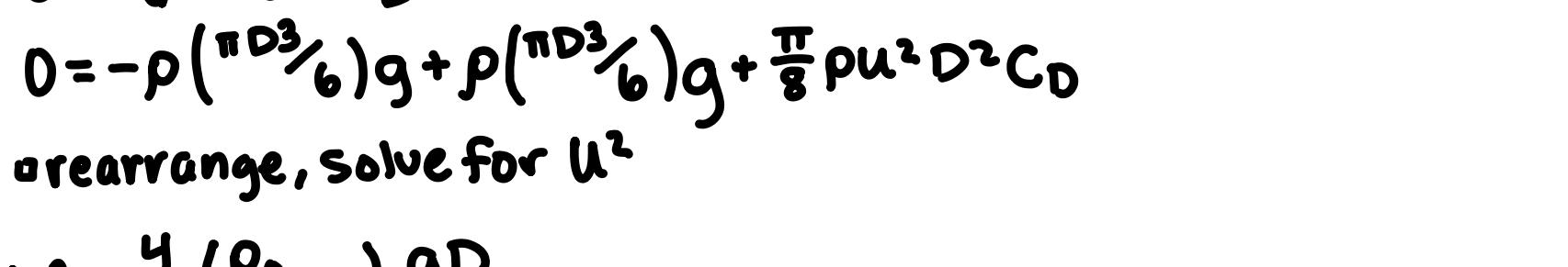
• Long Cylinder ($L \gg D$)

$$C_D = \frac{F_D / A_\perp}{\frac{1}{2} \rho U^2} = 2 \frac{F_D / L}{\rho U^2 D} \\ A_\perp = LD$$

• Disk (thickness negligible)

$$C_D = \frac{F_D / A_\perp}{\frac{1}{2} \rho U^2} = \frac{8}{\pi} \frac{F_D}{\rho U^2 D^2} \\ A_\perp = \pi D^2 / 4$$

• Flat Plate



$\langle \tau_w \rangle$ = average shear stress \hookrightarrow very large

$\langle \tau_w \rangle = F_D / A_w$; A_w is wetted area

$$A_{\parallel} \gg A_\perp \Rightarrow A_w \approx A_{\parallel} = \begin{cases} Lw & 1\text{-side} \\ 2Lw & 2\text{-side} \end{cases}$$

frictional drag \gg form drag

$$C_f = \frac{\langle \tau_w \rangle}{\frac{1}{2} \rho U^2} = \frac{2 F_D}{\rho U^2 A_w}$$

$C_f = f(x)(Re)$

$\square C_f = 1.328 Re^{-1/2}$ ($L < x_t$)

\hookrightarrow if all laminar and $Re > 100$

$\square C_f = \frac{0.455}{(\log Re)^{2.58}} - \frac{B}{Re}$ ($L > x_t$)

\hookrightarrow if turbulent and laminar

$\square B = 1050$ for $Re_t = 3 \cdot 10^5$

$\square B = 8700$ for $Re_t = 3 \cdot 10^6$

Terminal Velocity

• steady state velocity balancing forces of motion and drag force

e.g. sphere falling

$$D \stackrel{\text{st. stat.}}{=} \sum F_i$$

$$D = F_g + F_b + F_d$$

$$D = -\rho \left(\frac{\pi D^3}{6} \right) g + \rho \left(\frac{\pi D^3}{6} \right) g + \frac{1}{8} \rho U^2 D^2 C_D$$

rearrange, solve for U^2

$$U^2 = \frac{4}{3} \left(\frac{\rho_0 - 1}{\rho} \right) \frac{\rho D}{C_D}$$

$\square C_D$ is a fn of Re , so fn of U ! issue!

\hookrightarrow don't know what regime either,

so don't know relationship (linear, reciprocal, etc.)

$$[C_D(\frac{\rho_0}{\rho})^2] U^2 = \frac{4}{3} \left(\frac{\rho_0 - 1}{\rho} \right) \frac{\rho D}{C_D} [C_D(\frac{\rho_0}{\rho})^2]$$

$$C_D Re^2 = \frac{4}{3} \left(\frac{\rho_0 - 1}{\rho} \right) g D^2 \left(\frac{\rho}{\mu} \right)^2 \rightarrow \text{dimensionless!}$$

$$Ar = \frac{4 \rho D^2}{9 \mu L} \rightarrow \text{Archimedes #}$$

$$C_D Re^2 = \frac{4}{3} Ar$$

$\square 1.0 \leq Ar \leq 20$, $Re = Ar^{1/2}$, Stokes

$\square 20 \leq Ar \leq 2 \cdot 10^5$, iterative approach

$\square 2 \cdot 10^5 \leq Ar \leq 10^10$, $Re = (3Ar)^{1/2}$, Newton's ($C_D \approx \text{const.}$)